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The centre of mass is at the point with coordinates (E , 2}
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The centre of mass is at the point with coordinates (1.5, 3.6).
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The centre of mass is at the point with coordinates (2.4, 0.75).
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The centre of mass is at the point with coordinates (;5 I3
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From symmetry y =0

. . . . 3
.. The centre of mass is at the point with coordinates (g a, OJ
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The centre of mass is at the point with coordinates (g,%j
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The centre of mass is at the point with coordinates (
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Also y =0 from symmetry.

The centre of mass is at the point with coordinates L
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y= x meets y = 4x when x’ =4xie. x=12.

. when x>0,x=2

The small strip shown has dimensions
(¥, —¥,) by &x and centre of mass at

rt0ron)
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The centre of mass is at the point with coordinates (E ﬁj

15721
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@ Pearson

Divide the region into horizontal strips of
dimensions (x, —x,)byoy.

The centre of mass of such strips lies at

X1+X2
( 2 ’yJ

where x :g

24— 57

and x, =
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Using M = p[ yxde= p[ prdve+ p| yedx
=p[ 28 dv+ p| 24— dx dv
=p[§x3}2 —pE(x+4)(6—x)JEI
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164

55

=2.98(2s.f)

Hence the centre of mass has coordinates (164 1?}

11 By symmetry, the centre of mass of the uniform lamina will lie on the y =0 axis. The mass of the

lamina is M =2 '[ pydx, where p is the density. Integrating gives M =2p .[ X+S

0 (x+2)2x+1)
a3 1
=2 - dx
pJ‘O(2x+l x+2}

= 2p[§ln(2x+ I)—In(x+ 2)}

4

0

=2p (1n(27) - 1n(3)) =2p1n(9)
Now using the formula M x =2 .[: pxy dx,

M¥=2 J~4 (x+5)x
0 (x+2)(2x+l)

2 1
pj( 2(2x+1) x+2+2jdx

= 2p[—%ln(2x+1)+21n(x+2)+5x}

4

0

=2p(-4In(27)+2In(3)+2)= p(4+1n(3))
p(4+In(3))
4p1n(3)

Hence x = ~1.16(3s.f),and y=0
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X’ +4

dx

The mass of the lamina is M = J.O3 pydx = pJ‘O}

=p [arcsinh (4 x)]z = parcsinh(2)
Using the formula M x = .[ 03 pxy dx

sz: al dx . Make a change of variable u = x> +4, du =2xdx =

VX +4

e b= o[ = (52,

We also have M 7 = ij%yz dx

3 1 3
v 1a dx = %p[arctan (%x)]o

=1 parctan (). Hence,

=p

V13 -2 3

T u 134G s6),and 7= C) 000663 5.6)
arcsmh(%) 4 arcsinh (%)

Challenge

First we find the centre of mass of the pendant. The equation of the pendant curve is x = y°.

Because the pendant is symmetric, y = 0. Using the formula M x =2 .[; pxy dx
= 2p.[;x\/; dx = 2p[%x5/2]2 = p12&&  The mass of the pendant is M = 2.[;py dx
= 2p.[:\/; dx=2p [% x? ]z = p2, hence x =2.4. If the pendant is suspended at any point P on its

perimeter, no part of the pendant should be higher than P. If we connect P to the centre of mass with
a line /,, and draw a line /,at P which is perpendicular to /,, no parts of pendant should be above

that line. Some possible points are immediately obvious: these are on the symmetry axis y =0, (O, O)
and (4,0). Suppose another such point is (x,, y,). The equation for ¢, is Y _Z = —%, and for /7, 1s
X—X

— 1 Y
SAmb /Yy [d_y} = . Hence, at (x,, y,) we have M = —2JZ . Note that y, = \/z .
X=X, dx |, 2\/5 X, —X

Now we can find x, =1.9, and y, =+/1.9 . By symmetry, point (1.9, —/ 1.9) will also be a solution.

We also need to check the edges, where the tangent to the pendant is not defined. This gives us two
more points (4,£2).
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